此页面所有软件内容、截图、价格、介绍等均来源于互联网,地址均为第三方提供,请谨慎下载。
wav2vec2-large-xlsr-300-arabic
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.4514
- Wer: 0.4256
- Cer: 0.1528
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7_0
with splittest
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-300-arabic --dataset mozilla-foundation/common_voice_7_0 --config ur --split test
Inference With LM
import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "kingabzpro/wav2vec2-large-xlsr-300-arabic" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ar", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2 cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0