此页面所有软件内容、截图、价格、介绍等均来源于互联网,地址均为第三方提供,请谨慎下载。



X2Paddle

🆕 新开源项目FastDeploy

若您的最终目的是用于模型部署,当前飞桨提供FastDeploy,提供📦开箱即用云边端部署体验, 支持超过 🔥150 Text, Vision, Speech跨模态模型,并实现🔚端到端的推理性能优化。

  • 欢迎Star🌟 https://github.com/PaddlePaddle/FastDeploy
  • YOLOv5 C & Python 部署示例
  • YOLOv6 C & Python 部署示例
  • YOLOv7 C & Python 部署示例
  • RetinaFace C & Python 部署示例
  • YOLOv5Face 安卓部署示例

【问卷调查】 为了更好的推进飞桨框架以及X2Paddle的迭代开发,诚邀您参加我们的问卷,期待您的宝贵意见:https://iwenjuan.baidu.com/?code=npyd51

简介

X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持推理模型的框架转换PyTorch训练代码迁移,我们还提供了详细的不同框架间API对比文档,降低开发者将模型迁移到飞桨的时间成本。

特性

  • 支持主流深度学习框架

    • 目前已经支持Caffe/TensorFlow/ONNX/PyTorch四大框架的预测模型的转换,PyTorch训练项目的转换,涵盖了目前市面主流深度学习框架
  • 支持的模型丰富

    • 在主流的CV和NLP模型上支持大部分模型转换,目前X2Paddle支持130 PyTorch OP,90 ONNX OP,90 TensorFlow OP 以及 30 Caffe OP,详见 支持列表
  • 简洁易用

    • 一条命令行或者一个API即可完成模型转换

能力

  • 预测模型转换

    • 支持Caffe/TensorFlow/ONNX/PyTorch的模型一键转为飞桨的预测模型,并使用PaddleInference/PaddleLite进行CPU/GPU/Arm等设备的部署
  • PyTorch训练项目转换

    • 支持PyTorch项目Python代码(包括训练、预测)一键转为基于飞桨框架的项目代码,帮助开发者快速迁移项目,并可享受AIStudio平台对于飞桨框架提供的海量免费计算资源【新功能,试一下!】
  • API对应文档

    • 详细的API文档对比分析,帮助开发者快速从PyTorch框架的使用迁移至飞桨框架的使用,大大降低学习成本 【新内容,了解一下!】

安装

环境依赖

  • python >= 3.5
  • paddlepaddle >= 2.2.2
  • tensorflow == 1.14 (如需转换TensorFlow模型)
  • onnx >= 1.6.0 (如需转换ONNX模型)
  • torch >= 1.5.0 (如需转换PyTorch模型)
  • paddlelite >= 2.9.0 (如需一键转换成Paddle-Lite支持格式,推荐最新版本)

pip安装(推荐)

如需使用稳定版本,可通过pip方式安装X2Paddle:

pip install x2paddle

源码安装

如需体验最新功能,可使用源码安装方式:

git clone https://github.com/PaddlePaddle/X2Paddle.git
cd X2Paddle
git checkout develop
python setup.py install

快速开始

功能一:推理模型转换

PyTorch模型转换

from x2paddle.convert import pytorch2paddle
pytorch2paddle(module=torch_module,
               save_dir="./pd_model",
               jit_type="trace",
               input_examples=[torch_input])
# module (torch.nn.Module): PyTorch的Module。
# save_dir (str): 转换后模型的保存路径。
# jit_type (str): 转换方式。默认为"trace"。
# input_examples (list[torch.tensor]): torch.nn.Module的输入示例,list的长度必须与输入的长度一致。默认为None。

script模式以及更多细节可参考PyTorch模型转换文档。

TensorFlow模型转换

x2paddle --framework=tensorflow --model=tf_model.pb --save_dir=pd_model

ONNX模型转换

x2paddle --framework=onnx --model=onnx_model.onnx --save_dir=pd_model

Caffe模型转换

x2paddle --framework=caffe --prototxt=deploy.prototxt --weight=deploy.caffemodel --save_dir=pd_model

转换参数说明

X2Paddle API

目前X2Paddle提供API方式转换模型,可参考X2PaddleAPI

一键转换Paddle-Lite支持格式

可参考使用X2paddle导出Padde-Lite支持格式

功能二:PyTorch模型训练迁移

项目转换包括3个步骤

  1. 项目代码预处理
  2. 代码/预训练模型一键转换
  3. 转换后代码后处理

详见PyTorch训练项目转换文档。

使用教程

  1. TensorFlow预测模型转换教程
  2. MMDetection模型转换指南
  3. PyTorch预测模型转换教程
  4. PyTorch训练项目转换教程

:hugs:贡献代码:hugs:

我们非常欢迎您为X2Paddle贡献代码或者提供使用建议。如果您可以修复某个issue或者增加一个新功能,欢迎给我们提交Pull Requests,如果有PyTorch训练项目转换需求欢迎随时提issue~

网友提问

温馨提示! 即将跳转到 第三方 网站下载具体内容

点赞(63) 打赏

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部